Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 10, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available April 6, 2026
-
Abstract. The Peterson variety is a subvariety of the flag manifold G/B equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersec- tion multiplicities yields a Z-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find for- mulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt.more » « less
An official website of the United States government
